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Abstract: The effect of array errors (amplitude-, phase- and time errors) on the ensemble average directivity of an
adaptive antenna array is studied using Monte-Carlo simulations. It is shown that the effect of the errors can be
reduced by introducing a  so-called Butler matrix close to the radiating elements of the antenna.

1 Introduction
Adaptive antenna arrays is a means to improve the
performance of mobile communication systems by
decreasing the cochannel interference, resulting in an
increased spectral efficiency and an increased trunking
efficiency [2]. However, to achieve the desired
performance gain it is necessary that the entire signal
chain is properly calibrated, certainly during
production, and typically also during normal operation
In this paper Monte-Carlo simulations are used to
investigate the effect of calibration errors (amplitude-,
phase- and time errors) on the average azimuthal
directivity pattern of a steered beam antenna system.
The directivity is chosen as a suitable performance
measure since it does not require us to specify a
complex traffic model. Also, since time errors are
included in the present model, simulations are chosen as
the simplest tool of evaluation. The effect of amplitude-
and phase errors only can be described analytically as
shown in reference [1], but with time errors present the
analytical approach becomes more complicated.
To illustrate the effect of array errors three model
systems, A, B and C, are considered here (Figure 1).
System A is an ideal array without any errors. System B
is a non-ideal array with errors present, and finally,
system C is a non-ideal array with a Butler matrix
placed close to the radiating elements in the antenna. It
is assumed that the Butler matrix together with the
antenna elements forms a perfectly coherent subsystem.
The array errors are assumed to be independent, and
introduced in the feeder cables as shown in Figure 1.
The purpose of the Butler matrix in system C is to
reduce the effect of array errors. This is indeed the
result, and, as will be shown later in this report, in some
directions the presence of the Butler matrix will even
nullify the effect of array errors.

The outline of this paper is as follows. In section 2
analytical expressions for the instantaneous, azimuthal
directivity (IAD) of the three model systems in Figure 1
is derived. In section 3 these analytical expressions are
taken as a starting point for calculating a time and
ensemble average of the IAD using Monte-Carlo
simulations. Finally, in section 4 a short discussion and
a summary of the results are given.
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Figure 1. The three model systems considered in this
paper. (A): Ideal antenna array without errors, (B):
Non-ideal array with errors, and (C): Non-ideal array
with errors and with a Butler matrix “B” close to the
radiating elements. In the figure φ  denotes the azimuth
angle, ( )ty  is the baseband signal, w  is an adaptive
(complex) weight vector that is used to shape the
antenna pattern, and ( )tx  is the antenna excitation
vector. Parameters α , β  and γ  represent the errors in
amplitude, phase and time, respectively.
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2 Model

2.1 Instantaneous directivity
The instantaneous, azimuthal directivity (IAD) for an
antenna array at time t  is defined as

( ) ( ) ( )tPtFtD rad ,/,,2,, θφθπφθ ≡ (2.1)

where ( )tF ,,φθ  is the radiated power per unit solid
angle in direction { }φθ , , and ( )tPrad ,θ  is the total
radiated power per radian in elevation angle θ ,

( ) ( )∫≡ π φφθθ 2
0 ,,, dtFtPrad (2.2)

The radiated power F  can be written as

( ) ( ) 2,,,, tGtF φθφθ = (2.3)

where G  is the complex, antenna far-field pattern,

( ) ( ) ( )tggtG ae ,,,,, φθφθφθ = (2.4)

and eg  and ag  are the element- and the array-patterns,
respectively. The element-pattern itself is not of
particular interest here, and we simply assume that it
has a sinusoidal shape, and that it is directed in the
positive y-direction,

( ) ( )




 ≤≤=

else,0
0,sin/2, πφφπφθeg (2.5)

The array-pattern can be written as

( ) ( )ttg a xsH,, =φθ (2.6)

where ( )H⋅  denotes the Hermit conjugate, ( )tx  is the
L -dimensional antenna excitation vector, and s  is a
short-hand notation for a steering vector in direction
{ }φθ , ,

[ ]Lsss L,, 21
T =s (2.7)

( ) ( ){ }φθτπφθ ,2exp, kckk fiss == (2.8)

In eqs. (2.7-8) ( )T⋅  denotes matrix transpose, L  is the
number of antenna elements, cf  is the carrier
frequency, and kτ  is the time delay for a plane wave
traveling from antenna element number k , measured
relative to the origin,

( ) ( ) ckk /,ˆ, φθνφθτ ⋅= r (2.9)

where c  is the speed of light, ( )φθν ,ˆ  is the unit vector
in direction { }φθ , , and kr  is the position of antenna

Figure 2. Co-ordinate system. Filled circles indicate the
antenna element positions.

element k .
Assuming that the antenna elements are located on the
x-axis with equal separation d  (see Figure 2), the
position vector is given by

( )( )[ ]0,0,2/1T +−= Lkdkr (2.10)

For system C in Figure 1 the antenna excitation vector
in eq. (2.6) can be written as

( ) ( ) wx HBtBMt = (2.11)

where B is the LL×  Butler matrix, and M  is a time-
dependent, diagonal, LL×  matrix that describes the
baseband signal, including the array errors,
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( ) ( )tGPtM klklkl = (2.13)

where P  and G  are two diagonal matrices,

( ) { } klkkkl iP δβα exp1+= (2.14)

( ) ( )
{ } ( )∑ +∞=

−∞= −−=

−=
m
m klkcm

klkkl

mTthia

tytG

δγϕ

δγ

exp
(2.15)

In eqs. (2.14-15) kα  is the relative amplitude error in
feeder cable number k , kβ  is the phase error, kγ  is
the time delay in signal, klδ  is the delta-function,  a  is
an amplitude factor, cT  is the chip period time, mϕ  is
the phase in the I-Q diagram for the chip at time

cmTt = , and )(th  is the impulse-response for the
pulse-shaping filter.
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In the present work it is assumed that the pulse-shaping
filter is a root-raised cosine filter. Then, for 0=t ,

( )
π

π
α

−
+=

4
1th (2.16)

for α4/1=t ,

( ) ( ) ( ) 
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and otherwise,

( ) ( )( ) ( )( )
( )( )tt

ttt
th 241

1cos41sin
απ

απααπ

−

++−
= (2.18)

Note that in eqs. (2.16-18) α  is a filter design
parameter, not to be confused with the amplitude error

kα  in eq. (2.14).

Assuming QPSK modulation, the phase angle mϕ  in eq.
(2.15) can take values
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The weight vector w  in eq. (2.11) can be designed in
many ways to create a specific antenna pattern [3].
However, to keep things simple it is here assumed that it
is designed only to create a plane wave in a given target
direction { }00 ,φθ , that is,

( )000 ,
11

φθssw
LL

≡= (2.20)

where s  is defined by eqs. (2.7-8).
The so-called array-factor for system (C) in Figure 1
can now be written as

( ) ( ) ( ) swws HHHHH2,, BtBMBtBMtg a =φθ (2.21)

Setting the matrix B  in eq. (2.21) equal to the identity
matrix we obtain the array factor for system (B),

( ) ( ) ( )swws tMtMtg a
HHH2,, =φθ (2.22)

and finally, by setting the array errors equal to zero in
eq. (2.22),  0=== kkk γβα , we obtain the array
factor for the ideal antenna array,  (A) in Figure 1,

( ) ( ) ( )tytytga
*HH2,, swws=φθ (2.23)

From eq. (2.23) one can see that for the ideal antenna
array both F  and radP  on the right-hand side of eq.
(2.1) will have the same time-dependence, and hence
the IAD will be time-independent. This is also true for
system B and C, as long as we only have amplitude and

phase errors. However, with time errors present, the
IAD will in general be error-, data-, and time
dependent. That is, the IAD will depend on the specific
array errors that are present, it will depend on the
specific chip sequence that is being transmitted, and it
will also depend on the sampling time-position at the
receiver.

2.2 Average directivity for a specific array
The time and data dependence in the directivity can be
removed if the directivity is calculated as an average
over a given type of chip sequence distribution, and as a
time average over one chip period. In a spread-spectrum
communication system the chip sequence will be
pseudo-random, and one may therefore assume that the
phase angles mϕ  are randomly picked from the allowed
values in eq. (2.19). The average directivity for a
specific antenna array with a specific set of array errors
is defined as

( ) ( ){ }tDED ,,, φθφθ ϕ≡ (2.24)

where ϕE denotes the expectation with respect to a
random chip sequence.
Since ( ){ }tDE ,,φθϕ  is a periodic function in time, with

a period time equal to the chip period cT , the time
average can be calculated as

( ){ } ( ){ }∫
+

−
=

2/

2/
,,,, c

c

T

T
dttDEtDE φθφθ ϕϕ (2.25)

2.3 Ensemble average directivity
The exact values of the array errors are in general
unknown, and in many cases they can only be treated in
a statistical fashion. From a practical point of view it is
therefore useful to define the directivity as an ensemble
average, that is, as an average calculated over a
hypothetical collection of antenna arrays. The array
errors are then described by their statistical
distributions. In the present work we assume that the
errors are independent, zero mean normal variables with
standard deviations ασ , βσ , and γσ , respectively.

The ensemble average azimuthal directivity, D~ , is
defined as

( ) ( ){ }φθφθ αβγ ,,
~

DED ≡ (2.26)

where αβγE  denotes the expectation with respect to the
array error distributions.
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3 Monte Carlo simulation results
In this section the ensemble average azimuthal
directivity D~  in eq. (2.26) is estimated using Monte-
Carlo simulations. The directivity is estimated for the
three model systems A, B and C in Figure 1, and for
three different directions of the main lobe in the antenna
pattern.
As an example we consider a linear array with 4=L
antenna elements with equal separation 2/λ=d ,
where λ  is the carrier wavelength. The intrinsic Butler
matrix beams in system C are directed at angles

( )
Lk

dL
kL

k K,2,1,
2

12
arccos =






 +−

=
λ

φ (3.1)

that is, in this case at angles o4.41 , o5.75 , o5.104  and
o6.138 . In figures 3, 4 and 5 the envelope of the Butler

matrix beams is shown as the uppermost, dotted curve.
The pulse-shaping root-raised cosine filter ( )th  is
described by a roll-on-roll-off factor 22.0=α , and the
summation over index m on the right-hand side of eq.
(2.15) is truncated at 3=m .

The magnitude of the array errors used in the simulation
is chosen to be fairly realistic, and the numerical values
are shown in Table 1 below.

The Monte-Carlo estimation of D~  is straightforward.
For a given target (main lobe) direction the weight
vector w  is first calculated using eq. (2.20). For each
Monte-Carlo run n  the matrix ( )tM  in eq. (2.13) is
then calculated for a random chip sequence mϕ ,

,3,2,3 +−−= Km  for a random set of normally
distributed array errors, and at a random time t  picked
from a uniform distribution on the interval
[ ]2/,2/ cc TT +− . The instantaneous directivity nD  for
system B and system C is after that calculated using eqs.
(2.21-22) and (2.1-4). The above procedure is repeated

1000=N  times, and the ensemble directivity is finally
estimated simply as

∑ == N
n nD

N
D 1

1~ (3.2)

Table 1. Standard deviations for the array errors.

Parameter σα σβ σγ

[-] [degrees] [seconds]

Value 0.25 15 0.1 × cT

0 20 40 60 80 100 120 140 160 180

-15

-10

-5

0

5

10

15

20

Azimuth angle [deg]

A
zi

m
ut

ha
l d

ire
ct

iv
ity

 [d
B

i]

Main lobe directed towards  90.0 [deg]

A: Ideal
B: Non-ideal w/o butler
C: Non-ideal w/ butler
Butler envelope

Figure 3. Main lobe directed at 90 degrees, between the
second and the third Butler matrix lobe.
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Figure 4. Main lobe directed at at 75.5 degrees, on top
of the second Butler matrix lobe.
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Figure 5. Main lobe directed at 60 degrees, between the
first and the second Butler matrix lobe.
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In figures 3-5 is shown the ensemble average
directivity, estimated using eq. (3.2), and with the
variance of the array errors given by Table 1.
In the first plot, Figure 3, the main lobe is directed
straight ahead at 90 degrees, in the middle between the
second and the third Butler matrix intrinsic lobe. In the
figure one can see that the reduction in the main lobe
level (MLL) is 0.55 dB for system B, and slightly less,
0.45 dB, for system C. However, the increase in the first
side-lobe level (SLL) for system B - roughly 2 dB - is
significantly higher than the corresponding value, for
system C, 0.85 dB.
In Figure 4 the difference between a system with and
without a Butler matrix is shown even more clearly. In
this figure the main lobe is directed at 75.5 degrees, on
top of the second intrinsic Butler matrix lobe. System C
here is effectively immune to the array errors, and
displays the same directivity pattern as the ideal array,
system A. System B on the other hand shows the same
behavior as in the previous figure, the MLL is decrea-
sed by 0.5 dB, and the first SLL is increased by 1.8 dB.
Finally, in Figure 5 the main lobe is again placed in the
middle between two of the Butler matrix lobes, now at
60 degrees. The overall picture from Figure 3 is
repeated for both systems. For system B the MLL is
decreased by 0.6 dB, and the first SLL is increased by
1.6 dB. For system C the corresponding numbers are
0.5 dB for the MLL, and 0.4 dB for the first SLL.
Another way to illustrate the benefits of the Butler
matrix in system C is shown in table 2, 3 and 4. In those
tables we compare the first SLL for system B and C
(both measured relative to the SLL for the ideal system)
for different magnitudes of the amplitude-, phase-, and
time errors. In each table one of the errors is set equal to
zero, and the SLL is tabulated as a function of the
standard deviation of the two other errors.
 The simulations are done in a worst-case situation for
system C, with the main lobe directed straight ahead, in
the middle between two of the intrinsic Butler lobes.
For the beam direction and the error magnitudes used in
table 2-4, the maximum difference in the MLL between
system B and C is quite small, around 0.1 dB, and the
MLL numbers are therefore not shown here.
As an example of how to read the tables, consider Table
4 on this page. For a phase error 20=βσ degrees and a

time error 1.0/ =cTγσ , the increase in the SLL is 2.0
dB for system B, and 0.5 dB for system C. That is, the
presence of the Butler matrix has reduced the SLL for
system C by 2.0 - 0.5 = 1.5 dB.

Table 2. Side-lobe level (SLL) increase in dB for
system B and C as a function of amplitude and phase
error magnitudes (no time errors present).

Phase error σβ [degrees]
0 10 20 30

B 0.0 0.4 1.2 2.4
0.0

C 0.0 0.0 0.1 0.4
B 0.2 0.4 1.3 2.4

0.1
C 0.1 0.1 0.2 0.5
B 0.5 0.7 1.5 2.7

0.2
C 0.3 0.3 0.4 0.7
B 1.0 1.3 2.0 3.1

A
m

pl
itu

de
 e

rr
or

  σ
α

  [
-]

0.3
C 0.6 0.7 0.7   1.0*

Table 3. SLL increase in dB for system B and C as a
function of amplitude and time error (no phase errors).

Time error σγ /Tc [-]
0.0 0.1 0.2 0.3

B 0.0 1.0 2.1 2.9
0.0

C 0.0 0.3 0.7   1.1*
B 0.2 1.1 2.2 3.0

0.1
C 0.1 0.3 0.8   1.2*
B 0.5 1.3 2.5 3.2

0.2
C 0.3 0.6 1.0   1.1*
B 1.0 1.8 2.9 3.3

A
m

pl
itu

de
 e

rr
or

  σ
α

  [
-]

0.3
C 0.6 1.0 1.4   1.7*

Table 4. SLL increase in dB for system B and C as a
function of phase and time error (no amplitude errors).

Time error σγ /Tc [-]
0.0 0.1 0.2 0.3

B 0.0 1.0 2.1 2.9
0

C 0.0 0.3 0.6   1.1*
B 0.4 1.2 2.3 3.1

10
C 0.0 0.3 0.8   1.2*
B 1.2 2.0 2.8 3.5

20
C 0.1 0.5   0.9*   1.3*
B 2.4 3.0 3.8 4.2

Ph
as

e 
er

ro
r  

σ β
 [d

eg
]

30
C 0.4   0.8*   1.2*   1.9*

(*) No distinct side-lobe peak found for C  – stated
value is system C directivity at system B peak position.
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4 Summary and conclusions
In this paper we have shown that it is possible to reduce
the effects of array excitation errors (amplitude, phase,
and time errors) by placing a Butler matrix close to the
radiating elements in an antenna array in a steered beam
system. In the system with Butler matrix we introduce
the errors in beam space, while they are introduced in
element space for the system without Butler matrix.
Changes in directivity in the main beam direction as
well as for the first sidelobe are studied in systems with
and without Butler matrix. Performance for the system
with a Butler matrix significantly depends on the main
beam direction (whether it is pointed in the direction of
a beam defined by the butler matrix or not) while the
system without Butler matrix does not show this
dependency.
When errors are introduced, the system with Butler
matrix shows the largest performance reduction when
the main beam is directed in between two intrinsic
beams. The gain in directivity in the main beam
direction for the system with Butler matrix is for this
case very low, on the order of 0.1 dB, compared to the
system without Butler matrix. For the side lobe level,
the gain using a Butler matrix is more significant, on the
order of 1-2 dB for the errors levels considered in this
study.
In the most favorable direction for the system with
Butler matrix, i.e., when the beam direction equals one
of the intrinsic beam directions, the performance gains
are significant for main beam directivity as well as for
side lobe level.
In conclusion, a steered beam adaptive antenna system
with a Butler matrix beamforming network offers
potential gains. These can be used either to improve
antenna pattern performance for a given error level, or
to reduce the coherency requirements for a given
pattern performance.
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